1,102 research outputs found

    The Escape of Ionizing Photons from the Galaxy

    Full text link
    The Magellanic Stream and several high velocity clouds have now been detected in optical line emission. The observed emission measures and kinematics are most plausibly explained by photoionization due to hot, young stars in the Galactic disk. The highly favorable orientation of the Stream allows an unambiguous determination of the fraction of ionizing photons, F_esc, which escape the disk. We have modelled the production and transport of ionizing photons through an opaque interstellar medium. Normalization to the Stream detections requires F_esc = 6%, in reasonable agreement with the flux required to ionize the Reynolds layer. Neither shock heating nor emission within a hot Galactic corona can be important in producing the observed H-alpha emission. If such a large escape fraction is typical of L_* galaxies, star-forming systems dominate the extragalactic ionizing background. Within the context of this model, both the three-dimensional orientation of the Stream and the distances to high-velocity clouds can be determined by sensitive H-alpha observations.Comment: 4 pages; LaTeX2e, emulateapj.sty, apjfonts.sty; 4 encapsulated PS figures. For correct labels, may need to print Fig. 3 separately due to psfig limitation. Astrophysical Journal (Letters), accepte

    The X-ray Ridge Surrounding Sgr A* at the Galactic Center

    Full text link
    We present the first detailed simulation of the interaction between the supernova explosion that produced Sgr A East and the wind-swept inner ~ 2-pc region at the Galactic center. The passage of the supernova ejecta through this medium produces an X-ray ridge ~ 9'' to 15'' to the NE of the supermassive black hole Sagittarius A* (Sgr A*). We show that the morphology and X-ray intensity of this feature match very well with recently obtained Chandra images, and we infer a supernova remnant age of less than 2,000 years. This young age--a factor 3--4 lower than previous estimates--arises from our inclusion of stellar wind effects in the initial (pre-explosion) conditions in the medium. The supernova does not clear out the central ~ 0.2-pc region around Sgr~A* and does not significantly alter the accretion rate onto the central black hole upon passage through the Galactic center.Comment: 10 pages, 3 figures, submitted to ApJ

    The line-of-sight distribution of the gas in the inner 60 pc of the Galaxy

    Full text link
    2MASS K_S band data of the inner 60 pc of the Galaxy are used to reconstruct the line-of-sight distances of the giant molecular clouds located in this region. Using the 2MASS H band image of the same region, two different populations of point sources are identified according to their flux ratio in the two bands. The population of blue point sources forms a homogeneous foreground that has to be subtracted before analyzing the K_S band image. The reconstruction is made using two basic assumptions: (i) an axis-symmetric stellar distribution in the region of interest and (ii) optically thick clouds with an area filling factor of ~1 that block all light of stars located behind them. Due to the reconstruction method, the relative distance between the different cloud complexes is a robust result, whereas it is not excluded that the absolute distance with respect to Sgr A* of structures located more than 10 pc in front of Sgr A* are understimated by up to a factor of 2. It is shown that all structures observed in the 1.2 mm continuum and in the CS(2-1) line are present in absorption. We place the 50 km s^-1 cloud complex close to, but in front of, Sgr A*. The 20 km s^-1 cloud complex is located in front of the 50 km s^-1 cloud complex and has a large LOS distance gradient along the direction of the galactic longitude. The bulk of the Circumnuclear Disk is not seen in absorption. This leads to an upper limit of the cloud sizes within the Circumnuclear Disk of ~0.06 pc.Comment: 12 pages with 17 figures. Accepted for publication in A&

    The dynamics of the Circumnuclear Disk and its environment in the Galactic centre

    Get PDF
    We address the question of the dynamics in the inner 50 pc of the Galactic Centre. In a first step we investigate the cloud-cloud collision rate in the Circumnuclear Disk (CND) with the help of a three dimensional N-body code using gas particles that can have inelastic collisions. The CND might be a longer lived structure than previously assumed. The whole disk-like structure of the CND can thus survive for several million years. A realistic simulation of the CND shows the observed disk height structure. In a second step the environment of the CND is taken into account. Retrograde and prograde encounters of a cloud of several 10^4 M_solar falling onto an already existing nuclear disk using different energy loss rates per collision are simulated. The influence of the energy loss rate per collision on the evolution of the mass accretion and cloud collision rates is strongest for a prograde encounter. A composite data cube of two different snapshots of a prograde encounter together with the CND shows striking similarity with the observed Sgr A cloud complex. The current appearance of the Galactic Centre environment can thus be explained by at least two dynamically distinct features together with the CND. The current mass accretion rate within the CND ranges between 10^-3 and 10^-4 M_solar yr^-1. It can rise up to several 10^-2 M_solar yr^-1 during massive accretion events.Comment: 14 pages with 22 figures. Accepted for publication in A&

    A deep submillimetre survey of the Galactic Centre

    Get PDF
    We present first results from a submillimetre continuum survey of the Galactic Centre `Central Molecular Zone' (CMZ), made with SCUBA on the James Clerk Maxwell Telescope. SCUBA's scan-map mode has allowed us to make extremely wide-field maps of thermal dust emission with unprecedented speed and sensitivity. We also discuss some issues related to the elimination of artefacts in scan-map data. Our simultaneous 850/450 micron maps have a total size of approximately 2.8 x 0.5 degrees (400 x 75 pc) elongated along the galactic plane. They cover the Sgr A region-including Sgr A*, the circumnuclear disc, and the +20 km/s and +50 km/s clouds; the area around the Pistol; Sgr B2-the brightest feature on the map; and at their Galactic Western and Eastern edges the Sgr C and Sgr D regions. There are many striking features such as filaments and shell-like structures, as well as point sources such as Sgr A* itself. The total mass in the Central Molecular Zone is greater than that revealed in previous optically-thin molecular line maps by a factor of ~3, and new details are revealed on scales down to 0.33 pc across this 400 pc wide region.Comment: 12 pages, 3 figures, (figures now smaller, in paper body), accepted by ApJ

    High-resolution Observations of OH(1720 MHz) Masers Toward the Galactic Center

    Get PDF
    High-resolution VLA observations of 1720 MHz OH maser emission from Sgr A East and the circumnuclear disk with spatial and spectral resolutions of \approx 2\dasec5 ×\times 1\dasec3 and 0.27 \kms are reported. This follow-up observational study focuses on the recent discovery of a number of such OH maser features and their intense circularly polarized maser lines detected toward these Galactic center sources. The 1720 MHz maser line of OH arises from collisionally excited gas behind a C-type shock and is an important diagnostic of the interaction process that may occur between molecular clouds and associated X-ray emitting shell-type supernova remnants. The present observations have confirmed that the observed Stokes VV signal is due to Zeeman splitting and that the OH masers are angularly broadened by the scattering medium toward the Galactic center. The scale length of the magnetic field fluctuations in the scattering medium toward the Galactic center is estimated to be greater than 0.1-0.2 pc using the correlation of the position angles of the scatter-broadened maser spots. In addition, the kinematics of the maser spots associated with Sgr A East are used to place a 5 pc displacement between this extended radio structure and the Galactic center.Comment: 13 pages, 2 Tables and 2 figures, to be published in Ap
    corecore